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Key Points: 9 

 We have created a new version of the Met Office Hadley Centre and Climatic Research 10 

Unit global surface temperature dataset for 1850-2018. 11 

 The new dataset better represents sparsely observed regions of the globe and incorporates 12 

an improved sea-surface temperature dataset. 13 

 This dataset shows increased global average warming since the mid-nineteenth century 14 

and in recent years, consistent with other analyses. 15 

Abstract 16 

We present a new version of the Met Office Hadley Centre/Climatic Research Unit global 17 

surface temperature dataset, HadCRUT5. HadCRUT5 presents monthly average near-surface 18 

temperature anomalies, relative to the 1961-1990 period, on a regular 5° latitude by 5° longitude 19 

grid from 1850 to 2018. HadCRUT5 is a combination of sea-surface temperature measurements 20 

over the ocean from ships and buoys and near-surface air temperature measurements from 21 

weather stations over the land surface. These data have been sourced from updated compilations 22 

and the adjustments applied to mitigate the impact of changes in sea-surface temperature 23 

measurement methods have been revised. Two variants of HadCRUT5 have been produced for 24 

use in different applications. The first represents temperature anomaly data on a grid for 25 

locations where measurement data are available. The second, more spatially complete, variant 26 

uses a Gaussian process based statistical method to make better use of the available observations, 27 

extending temperature anomaly estimates into regions for which the underlying measurements 28 

are informative. Each is provided as a 200-member ensemble accompanied by additional 29 

uncertainty information. The combination of revised input datasets and statistical analysis results 30 

in greater warming of the global average over the course of the whole record. In recent years, 31 

increased warming results from an improved representation of Arctic warming and a better 32 

understanding of evolving biases in sea-surface temperature measurements from ships. These 33 

updates result in greater consistency with other independent global surface temperature datasets, 34 

despite their different approaches to dataset construction, and further increase confidence in our 35 

understanding of changes seen. 36 

  37 
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Plain Language Summary 38 

We have produced a new version of a dataset that measures changes of near-surface temperature 39 

across the globe from 1850 to 2018, called HadCRUT5. We have included an improved dataset 40 

of sea-surface temperature, which better accounts for the effects of changes through time in how 41 

measurement were made from ships and buoys at sea. We have also included an expanded 42 

compilation of measurements made at weather stations on land. 43 

There are two variations of HadCRUT5, produced for different uses. The first, the “HadCRUT5 44 

non-infilled dataset”, maps temperature changes on a grid for locations close to where we have 45 

measurements. The second, the “HadCRUT5 analysis”, extends our estimates to locations further 46 

from the available measurements using a statistical technique that makes use of the spatial 47 

connectedness of temperature patterns. This improves the representation of less well observed 48 

regions in estimates of global, hemispheric and regional temperature change. 49 

Together, these updates and improvements reveal a slightly greater rise in near-surface 50 

temperature since the nineteenth century, especially in the Northern Hemisphere, which is more 51 

consistent with other datasets. This increases our confidence in our understanding of global 52 

surface temperature changes since the mid-nineteenth century. 53 

  54 
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1 Introduction 55 

Observational evidence plays an essential role in our understanding of the climate, the causes of 56 

the observed changes and distance travelled along predicted future trajectories. Compilations of 57 

near-surface temperature measurements, as traditionally measured over land in shielded 58 

enclosures and at sea by ships and buoys, as well as multi-decadal temperature records derived 59 

from these compilations, are a core repository of information underpinning our understanding of 60 

a changing climate. Here we present an update to one such assessment, the Met Office Hadley 61 

Centre/Climatic Research Unit HadCRUT dataset (version HadCRUT.5.0.0.0, referred to 62 

hereafter as HadCRUT5), incorporating additional measurements, improved understanding of 63 

non-climatic effects associated with an ever-changing measurement network, and updated 64 

gridding methods. 65 

Global near-surface temperature analyses, based on a combination of air temperature 66 

observations over land with sea-surface temperature (SST) observations, are among the longest 67 

instrumental records of climate change and variability. They are routinely used in assessments of 68 

the state of the climate (e.g. Blunden & Arndt, 2019). They underpin our understanding of multi-69 

decadal to centennial changes and the causes of those changes (e.g. Hartmann et al., 2013) and 70 

are a key metric against which climate change policy decisions are made and progress against 71 

international agreements is measured (e.g. Allen et al., 2018). 72 

Analyses of multi-decadal temperature changes based on instrumental evidence are subject to 73 

uncertainty. Assessments of uncertainty and the influence of non-climatic factors on observations 74 

are necessary to understand the evolution of near-surface temperature throughout the 75 

instrumental period. Known sources of uncertainty include spatial and temporal sampling of the 76 

globe (Jones et al., 1997; Brohan et al., 2006), changes in measurement practice and 77 

instrumentation (Parker 1994; Kent et al., 2017), siting of observing stations and the effects of 78 

changes in their nearby environment (Parker 2006; Menne et al., 2018), and basic measurement 79 

error.    80 

Since the release of the predecessor of the dataset presented here, HadCRUT4 (Morice et al., 81 

2012), new analyses of near-surface temperature have been undertaken, and with them 82 

understanding has improved of deficiencies in the observing network and in analysis methods. 83 

This has led to updates to analyses with long pedigrees (Zhang et al., 2019; Lenssen et al., 2019), 84 

the arrival of new and independent analyses (Rohde et al., 2013a; 2013b; Rohde & Hausfather, 85 

2020; Yun et al., 2019), and related studies (Ilyas et al., 2017; Benestad et al., 2019; Kadow et 86 

al., 2020). 87 

Efforts to consolidate archives of instrumental air temperature series under the auspices of the 88 

International Surface Temperature Initiative (ISTI; Rennie et al., 2014) have greatly increased 89 

the availability of meteorological station series. The resulting ISTI databank underpins the 90 

updated GHCNv4 air temperature data set (Menne et al., 2018) and regional subsets of station 91 

series from the ISTI databank have been selectively included in updates to the CRUTEM4 and 92 

CRUTEM5 datasets (Jones et al., 2012; Osborn et al., 2020). These improved data holdings have 93 

increased observational coverage of regions that were previously poorly represented, including 94 

the rapidly warming high northern latitudes. 95 

Rohde et al. (2013a; 2013b) introduced a new land air temperature analysis developed 96 

independently of pre-existing studies. This analysis included a new method for bias-adjusting 97 

station records, a process that is commonly known as homogenization, and combined estimation 98 
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of homogenization adjustments with an independently developed spatial analysis method. The 99 

study has since been extended to include analysis of HadSST3 sea-surface temperatures 100 

(Kennedy et al., 2011a; 2011b) to produce a merged land-sea data product (Rohde & Hausfather, 101 

2020). 102 

A key uncertainty for estimating long-term change is that associated with corrections for 103 

systematic errors in sea-surface temperature measurements. Comparisons of long historical SST 104 

data sets (Kent et al., 2017) showed that there were differences between SST data sets which 105 

were larger than the estimated uncertainties. A comparison to modern “instrumentally 106 

homogeneous” data sets by Hausfather et al. (2017), found that HadSST3 (Kennedy et al., 2011a; 107 

2011b) and COBE-SST-2 (Hirahara et al. 2014) underestimated recent warming. Cowtan et al. 108 

(2018) compared SST products to coastal weather stations highlighting discrepancies between 109 

temperature trends in land and ocean data sets. Carella et al. (2018) used characteristic daily-110 

cycles in SST measurements to infer how the measurements were made and showed that 111 

previous assumptions under-estimated the prevalence of engine-room measurements. 112 

Freeman et al. (2017) compiled release 3.0 of the International Comprehensive Ocean 113 

Atmosphere Data Set (ICOADS) including newly digitized data. Two long-term historical SST 114 

analyses, HadSST and ERSST, which are based on ICOADS, have been updated using this new 115 

release. ERSST has gone through two updates – version 4 (Huang et al., 2016) and 5 (Huang et 116 

al., 2017) – which extended bias adjustments to the whole SST record, implemented 117 

improvements to the analysis, and quantified uncertainty. HadSST.4.0.0.0 (Kennedy et al., 2019) 118 

revisited the bias adjustments applied to the data, using oceanographic measurements to 119 

understand and reduce some of the key uncertainties in HadSST3. 120 

Recent updates to instrumental near-surface temperature data products have brought 121 

improvements in their assessment of uncertainty, and in provision of uncertainty information for 122 

use in onward analyses. Ensemble uncertainty assessments have become commonplace in air 123 

temperature datasets (Morice et al., 2012; Menne et al., 2018) and sea-surface temperature 124 

datasets (Kennedy et al., 2011b; Huang et al., 2016; Huang et al., 2019; Kennedy et al., 2019). 125 

The NOAAGlobalTemp version 5 analysis (Zhang et al., 2019; Huang et al., 2019) updates 126 

previous NOAA analyses (Smith et al., 2008) by bringing together updates to underpinning data 127 

holdings over land (Menne et al., 2018) and merges the expanded land data holdings of GHCNv4 128 

with the updated ERSSTv5 data set. An ensemble uncertainty assessment is included (Huang et 129 

al., 2019), sampling the uncertainty in parametric choices in the SST adjustments procedure, the 130 

station series homogenization algorithm (Menne et al., 2018) and the spatial analysis method 131 

used. 132 

The NASA Goddard Institute for Space Studies GISTEMPv4 analysis (Lenssen et al., 2019) 133 

introduces an updated uncertainty assessment, applying the GISTEMP spatial analysis methods 134 

to the 100-member GHCNv4 ensemble of homogenized station series and basing SST 135 

uncertainty assessments on the ERSSTv4 ensemble. Additional uncertainty associated with the 136 

production of spatial analyses from incomplete station data is assessed by sub-sampling 137 

reanalysis fields from a selection of modern reanalyses. 138 

Coverage of instrumental records of near-surface temperature changes is characterized by often 139 

sparse and non-uniform sampling of the globe. Assessments of uncertainty in global and regional 140 

average temperature changes have found that sparse data coverage is the most prominent source 141 

of uncertainty over monthly to decadal timescales (Brohan et al., 2006; Morice et al., 2012), 142 
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outweighing uncertainty arising from changes in observing methods. Recent studies have also 143 

shown that poor representation of some regions, notably the rapidly warming high northern 144 

latitudes, may have contributed to an underestimation of globally averaged temperature changes 145 

in recent years (Cowtan and Way, 2014; Karl et al., 2015). 146 

While efforts have been made to increase data coverage in the CRUTEM4 and now CRUTEM5 147 

data set through inclusion of additional meteorological station data in less well-observed regions 148 

(Jones et al., 2012; Osborn et al., 2020) and marine data holdings expanded to include recently 149 

digitized marine reports (Freeman et al. 2017), statistical analysis methods were not used in 150 

HadCRUT4 or its underpinning land and marine datasets to infer temperature changes in regions 151 

where measurements are not available. An independent application of local statistical 152 

interpolation methods to HadCRUT4, in a study by Cowtan and Way (2014), found that 153 

statistically infilled reconstructions showed recent warming over high latitude regions that is not 154 

proportionately represented in global mean temperatures calculated from the non-infilled 155 

HadCRUT4 data set. The study also included an analysis that used satellite-based upper air 156 

temperature estimates as a proxy for near-surface temperature variability in the gaps in data 157 

coverage in HadCRUT4, which also showed warming in these high latitude regions. This high-158 

latitude signal contributed to an increase in the assessed rate of change of global average 159 

temperatures since the beginning of the 21st century. 160 

Unlike HadCRUT4, other existing near-surface temperature datasets utilize statistical analysis 161 

methods to infer spatial fields from scattered observations. Analysis methods based on spatial 162 

covariance structure, known variously as optimal interpolation (e.g. as used in Reynolds & 163 

Smith, 1994), kriging (e.g. as used in Cowtan & Way, 2014), Gaussian process regression 164 

(Rasmussen & Williams, 2006) and variants thereof, have a long history of use, particularly in 165 

analyses of sea-surface temperatures (Reynolds et al., 2002; Reynolds & Smith, 1994; Donlon et 166 

al. 2012). These methods use knowledge of the covariance structure of spatial fields to infer field 167 

values as weighted averages of observations in locations with strong covariation. Typically, 168 

weighting is based on a statistical model in which nearby locations are expected to covary 169 

strongly and distant locations weakly. Methods of this form are a core part of the Rohde & 170 

Hausfather (2020) analysis and of the analysis of Cowtan and Way (2014). The GISTEMP data 171 

set also uses a distance-weighted average that, while similarly applying a weighted average of 172 

local observations, does not make use of a covariance model and so does not classify as a kriging 173 

type analysis. 174 

A second form of spatial analysis methods that are commonly applied in instrumental climate 175 

analyses, reduced space methods, decompose spatial temperature variability into a finite, 176 

typically orthogonal, set of spatial patterns of variability (Kaplan et al., 1997). These patterns are 177 

generally, but not necessarily, global in extent. Spatial reconstructions are then formed as a 178 

weighted sum of these patterns. The Empirical Orthogonal Teleconnection (Smith et al., 2008) 179 

method employed within the NOAAGlobalTemp v5 analysis falls within this category of 180 

reduced space algorithms, employing a finite set of locally defined spatial patterns that are fit to 181 

the available data. 182 

A recent assessment of the use of neural networks to estimate missing values in the HadCRUT4 183 

dataset (Kadow et al., 2020) expands the ensemble of methods used to reconstruct global 184 

temperatures. Derived global temperature series show good agreement with prior studies using 185 

more traditional methods. 186 
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Traditionally, surface temperature data sets have combined air temperatures over land with sea-187 

surface temperatures over the ocean, rather than the more natural choice of air temperatures over 188 

the ocean. SST measurements are currently far more numerous than marine air temperature 189 

(MAT) measurements because SST can be readily measured by automatic sensors on drifting 190 

buoys as well as being retrieved from satellite measurements of radiances, while observational 191 

sampling of MAT has been in recent decline (Berry & Kent., 2017). There are significant biases 192 

in daytime marine air temperature observations (Berry et al., 2004). Night-time measurements 193 

have therefore been used to develop observational records of marine air temperature changes 194 

(Kent et al. 2013), with up-to-date independent assessments of historical night-time MAT 195 

becoming available only recently (Junod & Christy 2020, Cornes et al., 2020). Anomalies in 196 

MAT and SST have been expected to be similar over long space and time scales due to the 197 

strong physical link between the two. However, Cowtan et al. (2015) showed that MAT and SST 198 

changes simulated in coupled climate models differ, with MAT warming slightly faster than 199 

SST, affecting comparisons of observed and modelled global temperature change if care is not 200 

taken to ensure an “apples to apples” comparison. They also found that decisions about how to 201 

handle marginal sea-ice areas could affect the estimated changes, depending on the use of SST or 202 

MAT. Therefore, while there is good motivation for the use of MAT (Cowtan et al., 2015; 203 

Richardson et al., 2016), there are currently challenges relating to the MAT observational 204 

network (Berry & Kent, 2017) that provide an observational rationale for the continued use of 205 

SST in monitoring global surface temperature variability and change until these challenges are 206 

addressed. 207 

Recent developments in satellite retrievals of surface skin temperatures present a new possibility 208 

for near-surface temperature monitoring, bringing the potential for detailed spatial information 209 

with sustained measurement over a time frame that is now of sufficient length for climate 210 

studies. Recent work (Rayner et al., 2020) has explored the potential of combining air 211 

temperature information inferred from satellite skin temperatures with traditional in situ 212 

observations, expanding on the understanding of relationships between satellite-derived skin 213 

temperatures and traditional near-surface air temperature observations, and on the stability of 214 

these relationships over time that is required to construct merged data products. Alternatively, 215 

dynamical reanalyses, that combine numerical weather prediction models with a range of varied 216 

observational data sources, are increasingly being used to monitor the climate (e.g. ERA5, 217 

Hersbach et al., 2020; JRA-55, Kobayashi et al., 2015; and MERRA-2, Gelaro et al., 2017). 218 

These alternative sources of near-surface temperature data provide useful information in 219 

locations that are not well represented in traditional near-surface temperature datasets. However, 220 

in all cases, understanding of non-climatic effects affecting observations and arising from 221 

analysis methods is required when combining observations from multiple sources. 222 

Here, two ensemble surface temperature datasets are presented. The first, the “HadCRUT5 non-223 

infilled dataset”, adopts the gridding and ensemble generation methods of HadCRUT4 (Morice 224 

et al., 2012). The second, the “HadCRUT5 analysis”, uses a statistical infilling method to 225 

improve the representation of sparsely observed regions. Through application of the statistical 226 

infilling method to the HadCRUT5 non-infilled ensemble, the HadCRUT5 analysis ensemble 227 

samples the uncertainty in the gridded near-surface temperature data that arises from residual 228 

biases in observational data after correction, for example associated with uncertainty in changes 229 

in instrumentation and measurement practices at meteorological stations (Brohan et al., 2006; 230 

Morice et al., 2012) and changes in sea-surface temperature measurement methods (Kennedy et 231 

al., 2019). It also samples the effects of basic measurement uncertainty, uncertainty arising from 232 
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estimation of gridded temperature fields from a finite number of observations and residual 233 

uncertainties associated with individual marine measurement platforms, where information 234 

identifying individual platforms is available (Kennedy et al., 2019). Statistical reconstruction 235 

uncertainty is also encoded in the HadCRUT5 analysis ensemble, producing an ensemble that 236 

samples a greater range of sources of uncertainty than was possible in HadCRUT4. Thus, the 237 

new ensemble analysis communicates the major known sources of uncertainty in an easily 238 

accessible way. 239 

The remaining sections of this paper are structured as follows. Section 2 describes the data sets 240 

used as inputs and for comparison. Section 3 provides an overview of the methods used to 241 

construct HadCRUT5. Results are presented in Section 4 with conclusions and discussion in 242 

Section 5. 243 

2 Input Datasets 244 

2.1 HadSST.4.0.0.0 245 

Version 4 of the Met Office Hadley Centre Sea-Surface Temperature data set, HadSST.4.0.0.0 246 

(Kennedy et al., 2019), is based on in situ measurements of SST from ships and buoys. The ship 247 

and buoy measurements are taken from ICOADS release 3.0 (Freeman et al. 2017) from 1850 to 248 

2014 and release 3.0.1 from 2015 to 2018. From 2016 onwards, measurements from drifting 249 

buoys are taken from the Copernicus Marine Environment Monitoring Service, as buoy data in 250 

ICOADS were incomplete following a change in data-transmission codes in late 2016. Early 251 

measurements made using buckets are adjusted using a physically based model of heat lost from 252 

water-sampling buckets (Folland and Parker 1995; Rayner et al., 2006). From the 1940s 253 

onwards, ship measurements are adjusted based first on comparisons with near-surface 254 

oceanographic measurements (Atkinson et al., 2014) and then, from the early 1990s onwards, on 255 

comparisons with buoy measurements. The resulting HadSST.4.0.0.0 data set is presented as 256 

anomalies relative to 1961-1990 on a 5° latitude by 5° longitude grid and is representative of 257 

SST as measured by drifting buoys at an approximate depth of 20 cm.  258 

 259 

Overall, the global SST change estimated from HadSST.4.0.0.0 is larger than that estimated from 260 

HadSST.3.1.1.0 (and earlier versions). This is due to two factors. First, new estimates of biases 261 

associated with measurements made in ships’ engine rooms show that these biases have declined 262 

since the 1950/60s, artificially reducing the long-term change represented in the underlying data 263 

and in earlier versions of HadSST. Second, a greater proportion of measurements during the 264 

1961-1990 period were estimated to have been made in ships’ engine rooms. Other changes 265 

include: using buoys as a reference data set; producing ensemble members with step changes in 266 

the time evolution of the proportions of canvas and wooden buckets in the early 20th century 267 

alongside ensemble members which assume a linear transition; estimating the fraction of 268 

incorrect metadata using comparisons with oceanographic measurements; and using comparisons 269 

with oceanographic measurements to narrow the range of plausible transition dates from canvas 270 

buckets to modern rubber buckets (see Kennedy et al. (2019) for a detailed discussion). 271 

  272 

Uncertainty in HadSST.4.0.0.0 is split into three main components associated with: pervasive 273 

systematic errors; systematic errors from individual ships or buoys; and uncorrelated errors from 274 

individual measurements and incomplete grid-box sampling. The pervasive systematic errors, 275 

which have complex temporal and spatial correlations, are represented using a 200-member 276 
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ensemble generated by varying uncertain parameters and choices in the bias adjustment scheme. 277 

The systematic errors are represented using covariance matrices that encode the error 278 

covariances between grid cells that arise from ships making measurements in multiple grid cells 279 

in a month. Finally, uncertainties from uncorrelated errors are provided as gridded fields. Note 280 

that these uncertainty components do not span the full range of uncertainty. In particular, 281 

structural uncertainty remains (Thorne et al., 2011) and there may be an underestimate in the 282 

systematic error component because it does not currently deal explicitly with errors that correlate 283 

at the level of national shipping fleets (Chan & Huybers, 2019) or with marine reports that lack 284 

ship call signs or other identifying information (Carella et al., 2017).  285 

 286 

2.2 CRUTEM.5.0.0.0 287 

Monthly averages of near-surface air temperature measured at weather stations over the land 288 

surface for 1850-2018 are obtained from CRUTEM.5.0.0.0 (Osborn et al., 2020, referred to 289 

hereafter as CRUTEM5). The CRUTEM station database is a collection of station series obtained 290 

from National Meteorological and Hydrological Services (NMHSs) and large collections such as 291 

the European Climate Assessment and Dataset (Klein Tank et al., 2002). CRUTEM incorporates 292 

corrections that NMHSs apply to their own data to minimize the impact of changes in weather 293 

station instrumentation or location on the measurement series. The monthly average temperatures 294 

from stations are subjected to quality control, converted to anomalies (differences from their 295 

1961–1990 means) and then averaged into 5° latitude by 5° longitude grid boxes. 296 

 297 

CRUTEM5 has improved quality control checks that: (i) improve the flagging of incorrect data 298 

during 1941-1990; (ii) reduce the trend towards increased flagging of suspect data outside of the 299 

1941-1990 period; and (iii) reduce the number of genuine extreme values that are erroneously 300 

flagged as incorrect, e.g. during coherent extreme events such as summer 2003 in Europe (see 301 

Osborn et al. (2020) for details). The station database has been expanded such that the number of 302 

those stations with sufficient data to estimate temperature anomalies has grown from 4842 in 303 

CRUTEM.4.0.0.0 (as used in Morice et al., 2012) to 7983 in CRUTEM5 (Osborn et al., 2020). 304 

Most of the new data acquisitions are in already-sampled regions, so the number of grid-box 305 

values is only moderately expanded (by 9%) relative to CRUTEM.4.0.0.0. 306 

 307 

The changes in temperature seen in hemispheric or global averages since 1850 are not sensitive 308 

to these updates, but some regional differences are apparent. Osborn et al. (2020) describes the 309 

effects of updates since CRUTEM.4.0.0.0, and of updates since the more recent 310 

CRUTEM.4.6.0.0 (as used in HadCRUT.4.6.0.0), in detail.  311 
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An alternative gridding method was explored in Osborn et al. (2020) for CRUTEM5 to address 312 

the under-representation of high latitude stations in the standard gridding. This alternative 313 

method allows each station to contribute to more than one neighboring 5° latitude by 5° 314 

longitude grid box on the same latitude, where the number of grid boxes to which each station 315 

can contribute is determined by an inverse cosine latitude weighting. In the current paper, the 316 

alternative gridding method is not used because (a) the uncertainty model for the CRUTEM5 317 

grids, as documented in Brohan et al. (2006), only applies to the standard gridding approach 318 

(where each station contributes to only one grid box); and (b) the issue of high-latitude sampling 319 

is dealt with here by statistical infilling. 320 

HadCRUT5 uses an ensemble version of the CRUTEM5 uncertainty model. The HadCRUT5 321 

non-infilled ensemble grids and accompanying uncertainty grids are produced from the 322 

CRUTEM5 station temperature anomaly series, following the methods of Morice et al. (2012), as 323 

described in Section 3.2. 324 

2.3 HadISST.2.2.0.0 325 

We use sea ice concentration from the Met Office Hadley Centre sea-Ice and Sea Surface 326 

Temperature data set, HadISST.2.2.0.0 (an update to Titchner and Rayner (2014)), on a 1° 327 

latitude by 1° longitude grid to determine the presence or absence of sea ice in any individual 328 

ocean grid box in each month from 1850 to 2018. 329 

HadISST.2.2.0.0 is updated relative to version 2.1.0.0 in the following ways: (i) reinstatement of 330 

a small number of erroneously-removed sea-ice-filled grid boxes after 1978; (ii) an alteration to 331 

the adjustments applied to the National Ice Center charts (used to determine the ice edge between 332 

1972 and 1978) correcting a low-bias in the HadISST.2.1.0.0 fields in the Arctic then; and (iii) 333 

an improvement in the interpolation applied between two atlas-derived climatologies used to 334 

determine ice extents in the Antarctic to produce a smoother transition between them and 335 

between 1962 and the start of monthly observations in 1972. 336 

2.4 ERA5  337 

We have used monthly ERA5 analysis 2 m air temperature data from 1979-2018 (Hersbach et 338 

al., 2020) for coverage uncertainty estimation and for comparison of global and regional 339 

diagnostics. ERA5 was produced using 4D-Var data assimilation in the European Centre for 340 

Medium-range Weather Forecasts’ (ECMWF) Integrated Forecast System (IFS). We used the 341 

(31 km) high resolution realization. 342 

2.5 Other comparison data 343 

Four comparison data sets are used here: NOAAGlobalTemp version 5 (Zhang et al., 2019; 344 

Huang et al., 2019), GISTEMP version 4 (Hansen et al., 2010; Lenssen et al., 2019), Berkeley 345 

Earth (Rohde & Hausfather, 2020) and Cowtan & Way (Cowtan & Way, 2014). 346 

NOAAGlobalTemp version 5 is based on the Global Historical Climatology Network (GHCN) 347 

version 4 land station data set (Menne et al., 2018) and the Extended Reconstruction Sea Surface 348 

Temperature (ERSST) data set version 5 (Huang et al., 2017). Station records in GHCN v4 are 349 

homogenized using an automated algorithm. SSTs are adjusted using comparisons with marine 350 
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air temperature and latterly drifting buoys. The data are interpolated using Empirical Orthogonal 351 

Teleconnections, providing improved coverage, although coverage does not extend fully into the 352 

polar regions. 353 

GISTEMP version 4, like NOAAGlobalTemp v5, is based on a combination of GHCN v4 and 354 

ERSST v5. The SST data are interpolated as in NOAAGlobalTemp. Land surface air 355 

temperatures are interpolated from station data within a 1200km radius. Extrapolated land 356 

surface air temperatures are used over the oceans in sea-ice covered areas. Coverage of the 357 

GISTEMP data set is quasi-global in the past twenty years, with good coverage of the poles and 358 

other data-sparse regions from interpolated station data. 359 

The Berkeley Earth data set (Rohde & Hausfather, 2020) uses a kriging-based technique to 360 

interpolate and homogenize station data. A kriging based technique is also applied to SSTs from 361 

the HadSST3 data set to provide coverage over the whole globe. The version of the data set that 362 

uses extrapolated land-surface air temperatures over the oceans in sea-ice covered areas is used 363 

here. 364 

Cowtan and Way (2014) is based on the HadCRUT4 data set. The land and ocean data are 365 

interpolated using kriging. Grid cells that contain data in HadCRUT4 are not modified during 366 

interpolation (in contrast to the kriging of HadSST3 data in the Berkeley Earth data set). As with 367 

GISTEMP and Berkeley Earth, extrapolated land-surface air temperatures are used over the 368 

oceans in sea-ice covered areas. 369 

The Berkeley Earth (1° latitude by 1° longitude resolution) and ERA5 (0.25° latitude by 0.25° 370 

longitude resolution) analyses were regridded to 5° latitude by 5° resolution using an area-371 

weighted average of all grid cells falling within a HadCRUT5 5° grid cell. Cowtan and Way and 372 

NOAAGlobalTemp were obtained on a 5° grid. The GISTEMP data, which were obtained on a 373 

2° grid, were not regridded. 374 

 375 

3 Methods 376 

Two gridded datasets are provided as part of HadCRUT5. The first version of the dataset is 377 

produced without statistical infilling, referred to here as the “HadCRUT5 non-infilled dataset”, 378 

following the methods of Morice et al. (2012), and is intended for use in applications where 379 

statistical infilling is not desired. This is accompanied by a second version of the dataset, 380 

hereafter referred to as the “HadCRUT5 analysis”, that is produced using a statistical method to 381 

estimate more-complete temperature anomaly fields. 382 

The HadCRUT5 non-infilled dataset and the HadCRUT5 analysis are produced in the following 383 

steps. First, an ensemble land-surface air temperature dataset, with accompanying additional 384 

uncertainty information, is generated from the CRUTEM5 station data (Section 3.2). The land 385 

dataset is then merged with sea-surface temperature anomaly information from HadSST4 386 

through a weighting method based on the land area fraction (Section 3.4) to produce the non-387 

infilled dataset. Next, monthly fields are estimated separately for the land surface air temperature 388 

dataset and for HadSST4 using a statistical method to create an ensemble analysis for each 389 

(Section 3.3). The separate land and ocean analyses are then merged into a combined land and 390 



Confidential manuscript submitted to Journal of Geophysical Research: Atmospheres 

11 

 

ocean ensemble analysis using a land-sea weighting scheme that also accounts for sea ice 391 

coverage (Section 3.4). Global and regional time series are then computed from the two merged 392 

datasets, following the methods of Morice et al. (2012) with updates to the method used to 393 

estimate uncertainty associated with incomplete observational coverage described in Section 3.5. 394 

Error models for each dataset are described in Section 3.1. Full details of uncertainty propagation 395 

for land and ocean merging and global and regional time series are provided in the Supporting 396 

Information. 397 

 398 

3.1 The HadCRUT5 error models 399 

This section outlines the terms of the error model for grids and time series of the HadCRUT5 400 

non-infilled dataset and the HadCRUT5 analysis. Further details are given in the Supporting 401 

Information. 402 

The error models are split into components according to the way that uncertainty information is 403 

presented in HadCRUT5. The sources of uncertainty modelled in HadCRUT5 are grouped 404 

according to their correlation structure to allow uncertainties to be propagated appropriately into 405 

derived diagnostics such as regional average time series. 406 

3.1.1 The HadCRUT5 non-infilled dataset 407 

The error model for the non-infilled dataset describes the estimate of temperature anomaly 𝑇̂(𝑠, 𝑡) 408 

at spatial location 𝑠 and time 𝑡 as a sum of the true temperature anomaly 𝑇(𝑠, 𝑡) and three error 409 

terms: a bias term 𝜀𝑏(𝑠, 𝑡) representing biases with large-scale spatial and temporal structure; a 410 

partially correlated error term 𝜀𝑝(𝑠, 𝑡) for errors with typically local structure; and an 411 

uncorrelated error term 𝜀𝑢(𝑠, 𝑡) describing errors that are independent between spatial and 412 

temporal locations. The full error model for non-infilled fields is given by: 413 

 414 

𝑇̂(𝑠, 𝑡) = 𝑇(𝑠, 𝑡) + 𝜀𝑏(𝑠, 𝑡) + 𝜀𝑝(𝑠, 𝑡) + 𝜀𝑢(𝑠, 𝑡) 
(

1) 

 415 

This error model for the merged dataset matches the structure of the error model for the land 416 

dataset and for HadSST4. For the land dataset, the contributions to the bias term are the land 417 

station homogenization error, urbanization and biases from non-standard measurement 418 

enclosures. There is no contribution to the partially correlated term and the uncorrelated term 419 

models the within grid box measurement and sampling uncertainties (Morice et al., 2012). For 420 

HadSST4, the bias term models the effects of residual errors in the adjustments applied to 421 

account for changes in measurement methods, the partially correlated term models the effects of 422 

residual biases associated with individual observing platforms, and the uncorrelated term models 423 

the within grid cell measurement and sampling uncertainties (Kennedy et al., 2019).  424 

The HadCRUT5 non-infilled ensemble samples the uncertainties for the combination 𝑇(𝑠, 𝑡) +425 

𝜀𝑏(𝑠, 𝑡). The uncertainties for partially correlated and uncorrelated errors are not encoded into 426 
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the non-infilled ensemble. Instead, uncertainty information for partially correlated errors 𝜀𝑝(𝑠, 𝑡) 427 

is provided in spatial error covariance matrices and uncertainties for uncorrelated errors 𝜀𝑢(𝑠, 𝑡) 428 

are provided for each observed grid cell. 429 

The error model for estimates of spatial average time series 𝑇̂(𝑡) derived from the gridded data is 430 

given as a sum of the true temperature anomaly time series 𝑇(𝑡) and four error terms: 431 

 432 

𝑇̂(𝑡) = 𝑇(𝑡) + 𝜀𝑏(𝑡) + 𝜀𝑝(𝑡) + 𝜀𝑢(𝑡) + 𝜀𝑐(𝑡) 
(

2) 

433 

Here 𝜀𝑏(𝑡) is the effect of the bias term propagated into the spatial average, 𝜀𝑝(𝑡) is the effect of 434 

the partially correlated term, 𝜀𝑢(𝑡) the effect of the uncorrelated error term. The fourth error 435 

term, 𝜀𝑐(𝑡), is the error in estimating the spatial average from incomplete spatial coverage, with 436 

missing grid cells resulting from limitations in the spatial sampling provided by the observation 437 

network. Full details of uncertainty propagation for each of these terms are given in the 438 

Supporting Information. 439 

3.1.2 The HadCRUT5 analysis 440 

An overview of the HadCRUT5 analysis is provided in Section 3.4 and a detailed description of 441 

methods is provided in Appendix A. The HadCRUT5 analysis error model has fewer terms than 442 

that of the non-infilled dataset as the analysis methods combine multiple sources of error into a 443 

single analysis error term. The error model for the HadCRUT5 analysis defines the temperature 444 

anomaly estimate as the sum of the true temperature 𝑇(𝑠, 𝑡) and the analysis error 𝜀𝑎(𝑠, 𝑡): 445 

 446 

𝑇̂(𝑠, 𝑡) = 𝑇(𝑠, 𝑡) + 𝜀𝑎(𝑠, 𝑡) 
(

3) 

 447 

The analysis error term combines all errors that are modelled in the Gaussian process analysis, 448 

both spatial reconstruction errors and observational errors, as described in Appendix A. The 449 

analysis ensemble samples the analysis uncertainty such that each ensemble member is a sample 450 

of 𝑇(𝑠, 𝑡) + 𝜀𝑎(𝑠, 𝑡). 451 

 452 

For the HadCRUT5 analysis, errors in global and regional average time series are derived as a 453 

combination of the propagated analysis error and 𝜀𝑎(𝑡) and an additional coverage error term 454 

𝜀𝑐(𝑡) that represents the error in estimating the spatial average from incomplete analysis grids, 455 

noting that this coverage error term differs from that of the non-infilled dataset due to the 456 

different spatial coverage of the analysis. 457 

 458 

𝑇̂(𝑡) = 𝑇(𝑡) + 𝜀𝑎(𝑡) + 𝜀𝑐(𝑡) 
(

4) 

 459 
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The propagation of uncertainty associated with these errors is described in the Supporting 460 

Information. 461 

3.2 Ensemble land air temperature data set 462 

As in the previous versions of HadCRUT, near-surface air temperature information over land is 463 

derived from the CRUTEM data set. As in Morice et al. (2012), an ensemble air temperature data 464 

set is produced by sampling from the distributions of known uncertainty in station temperature 465 

records. The station data on which the ensemble grids are based has been updated to now use the 466 

CRUTEM.5.0.0.0 data set (Osborn et al., 2020). 467 

A detailed description of the land air temperature ensemble sampling method can be found in 468 

Morice et al. (2012). The sampling approach is designed so that the effects of known sources of 469 

residual systematic error in station anomaly series can be quantified for regional statistics and 470 

time series. The ensemble size has been increased to 200 members for HadCRUT5 to match the 471 

200-member HadSST4 ensemble. 472 

The sampling method is as follows. Samples are drawn from the distributions of known 473 

uncertainties during the station gridding process. Residual homogenization error and uncertainty 474 

in climatology normal information are sampled from distributions described in Brohan et al. 475 

(2006) and encoded into realizations of individual station series prior to gridding. The systematic 476 

effects of residual urbanization errors (Brohan et al., 2006; Parker, 2010) and non-standard 477 

sensor enclosures (Parker, 1994; Folland et al., 2001) are sampled and encoded into the gridded 478 

ensemble at a regional level, again following the method of Morice et al. (2012). 479 

Additional uncertainty information for errors that are uncorrelated between grid cells (e.g. from 480 

measurement error or incomplete sampling of a grid cell) is not encoded into the land ensemble. 481 

Instead, these measurement and sampling-related uncertainties are provided as additional 482 

uncertainty information outside of the ensemble, as in Morice et al. (2012).  483 

 484 

3.3 Spatial analysis of temperature anomaly fields 485 

HadCRUT5 now includes an ensemble spatial analysis that reconstructs more spatially extensive 486 

anomaly fields from the available observational coverage. The purpose of this analysis is to: (1) 487 

reduce uncertainty and bias associated with estimation of global and regional climate diagnostics 488 

from incomplete and uneven observational sampling of the globe; (2) provide improved 489 

estimates of temperature fields in all regions; and (3) provide a method to quantify uncertainty in 490 

anomaly patterns. 491 

We adopt a Gaussian process based method for spatial analysis that is closely related to the 492 

ordinary kriging approach (Rasmussen & Williams, 2006), and apply the method independently 493 

to land air temperature and sea-surface temperature observations before merging the two to 494 

produce a global analysis. The method models monthly temperature anomaly fields as 495 

realizations of a Gaussian processes with a simple covariance structure, defined as a function of 496 

the distance between locations, and an a priori unknown mean, and accounts for observational 497 

uncertainty. A detailed description of the analysis method is presented in Appendix A.  498 
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The Gaussian process method is applied to the 5° latitude by 5° longitude gridded anomaly fields 499 

of the land ensemble and the HadSST4 ensemble. The additional observational uncertainty terms 500 

that accompany these input ensembles are provided to the Gaussian process estimation as 501 

monthly error covariance matrices. The spatial reconstructions are based upon a model of the 502 

covariance structure of the 5° latitude by 5° longitude anomaly fields. This covariance structure 503 

is modelled using a Matérn covariance function, for which the covariance decays as a function of 504 

Euclidian distance between locations. The parameters of the Matérn covariance function are 505 

fitted separately for land air temperature and sea-surface temperature anomalies (see Appendix 506 

A.2), representing typical variability in each domain. 507 

As a Bayesian method, the approach provides a framework for assessing analysis uncertainties 508 

and provides the capability to draw samples from the posterior distribution of the analysis. We 509 

generate an ensemble of field estimates through application of the analysis method to each input 510 

ensemble member and then drawing samples from the posterior distributions of the Gaussian 511 

process estimates. The land and ocean analysis ensembles combine all sources of uncertainty 512 

represented in the input gridded datasets whilst respecting the estimated covariance structure of 513 

the temperature anomaly field so that each ensemble member is a plausible spatial analysis of the 514 

temperature anomaly field. 515 

The analysis has limited capability to reconstruct temperatures at long distances from available 516 

observations, as the field estimates are based on a model of local covariance structure. We 517 

therefore introduce criteria for excluding regions where there is not a strong observational 518 

constraint on the analysis (see Appendix A.4). The masked land air temperature and sea-surface 519 

temperature anomaly ensembles are then merged, as described in Section 3.4. 520 

3.4 Blending land air temperatures with sea-surface temperature data 521 

The 200-member ensemble land air temperature data set based on CRUTEM5 and the 200-522 

member HadSST4 are merged as a weighted average of the 5° latitude by 5° longitude land and 523 

marine fields. Two versions of the data set are provided: one that uses the spatial analysis 524 

method presented in Section 3.2 and one that does not. 525 

3.4.1 Merging non-infilled datasets 526 

For the non-infilled dataset, the land air temperature ensemble and HadSST4 ensemble members 527 

are merged following the methods of Morice et al. (2012). The temperature anomaly 𝑇(𝑠, 𝑡) at 528 

location 𝑠 and time 𝑡 is defined as the weighted average of the air temperature anomaly 𝑇𝐿(𝑠, 𝑡) 529 

and sea surface temperature anomaly 𝑇𝑀(𝑠, 𝑡), with weights 𝑓(𝑠, 𝑡): 530 

 531 

𝑇(𝑠, 𝑡) = 𝑓(𝑠, 𝑡)𝑇𝐿(𝑠, 𝑡) + (1 − 𝑓(𝑠, 𝑡))𝑇𝑀(𝑠, 𝑡) 
(

5) 

 532 

The weighted average is based on the areal fraction of land and sea in a 5° latitude by 5° 533 

longitude grid cell using the same land fraction data set as HadCRUT4, originally derived from 534 

the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA; Donlon et al., 2012) 535 

0.05° land mask information. As in HadCRUT4, land air temperature information receives a 536 
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minimum weighting of 25% to prevent island stations from receiving near-zero weighting. 537 

Where only one of the land air temperature or sea-surface temperature data sets are available, the 538 

available data source receives 100% weighting. 539 

Methods for merging the uncertainty fields and measurement error covariance information for 540 

land and marine data sets are unchanged from those described in Morice et al. (2012) and are 541 

detailed in the Supporting Information. 542 

3.4.2 Merging land and ocean analyses 543 

The land-sea weighting scheme is modified for the HadCRUT5 analysis. Areas of sea ice are 544 

treated as if they were land in the weighting (consistent with the approach used by Cowtan & 545 

Way (2014)), so that temperature anomalies over sea ice are reconstructed as part of the air 546 

temperature analysis rather than the SST analysis.   547 

Sea ice concentrations are obtained from the HadISST.2.2.0.0 data set. Where the ice 548 

concentration on the native 1° latitude by 1° longitude HadISST.2.2.0.0 grid exceeds 15%, the 549 

threshold value used to define the ice edge in Titchner and Rayner (2014), the area is considered 550 

to be ice covered for the purpose of deriving weights. Ice concentrations below 15% are treated 551 

as open water. For each HadISST.2.2.0.0 grid cell, a value of one is set if the sea-ice 552 

concentration is greater than 15% and zero otherwise. On the 5° latitude by 5° longitude 553 

HadCRUT5 grid, the fractional area of water covered by sea ice is then obtained through area-554 

weighted averages of the non-land 1° grid cells of ones and zeroes. This area of ice-covered 555 

water is treated as land when deriving weights for land and ocean analyses. 556 

The 25% minimum weighting for land air temperature is retained for any 5° latitude by 5° 557 

longitude grid cells that are observed in the non-infilled land air temperature data set so that 558 

information from island stations is not lost in the averaging. This minimum weighting is not 559 

applied in grid cells that are not directly observed. Reconstructed land air temperatures are not 560 

used over 100% sea regions where there are no land stations or sea ice and, similarly, 561 

interpolated SST is not used over 100% land regions. This prevents extrapolation of land air 562 

temperature far into ocean regions and prevents inland extrapolation of SSTs. 563 

3.5 Estimating uncertainty arising from incomplete coverage 564 

Spatial fields of temperature anomalies in the non-infilled HadCRUT5 data set and the 565 

HadCRUT5 analysis are not globally complete. Variability in regions of the world that are not 566 

represented in the spatial fields gives rise to uncertainty in global and regional time series. For 567 

the non-infilled HadCRUT5, the coverage uncertainty accounts for regions of the globe where 568 

insufficient observations are available to compute grid cell average anomalies in the underlying 569 

air temperature and SST data sets. For the HadCRUT5 analysis, the coverage uncertainty 570 

accounts for the masked regions of the analysis that are not well constrained by observations. 571 

Coverage uncertainty is assessed by sub-sampling globally-complete reanalysis fields to the 572 

coverage of HadCRUT5 using the method presented in Brohan et al. (2006) and Morice et al. 573 

(2012), which is described in detail in the Supporting Information. The approach is updated here 574 

to use the recently-released ERA5 reanalysis (Hersbach et al., 2020) as the globally-complete 575 

reference data set, in place of the previously used NCEP/NCAR reanalysis (Kalnay et al., 1996). 576 
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Temperature anomalies are computed for the ERA5 monthly 2 m air temperature grids, 577 

referenced to the period of ERA5 that overlaps with our climatology period: 1979-1990. 578 

Anomalies are then averaged to the 5° latitude by 5° longitude grid used in HadCRUT5 to 579 

produce the reference fields for the coverage uncertainty calculations. 580 

 581 

  582 
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4 Results  583 

4.1 Effects of updated data and methods in HadCRUT5 584 

 585 

 586 

Figure 1. Annual average difference between HadCRUT.5.0.0.0 and HadCRUT.4.6.0.0 (°C), 587 

1850-2018. (a) Globe, (b) Northern Hemisphere and (c) Southern Hemisphere. Orange: non-588 

infilled HadCRUT5. Blue: HadCRUT5 analysis. Solid lines: ensemble mean (HadCRUT.5.0.0.0) 589 

or median (HadCRUT.4.6.0.0). Orange/blue shading: 95% confidence interval determined by the 590 

ensemble spread and coverage uncertainty (the blue shading for the HadCRUT5 analysis lies 591 

mostly within the orange shading, where it appears as a darker grey due to the overlap). Light 592 

grey shading: 95% confidence interval on HadCRUT.4.6.0.0. Global means have been calculated 593 

by averaging hemispheric anomaly series for northern and southern hemispheres with equal 594 

weighting given to each hemisphere. 595 
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 596 

Differences in global and hemispheric mean time series between HadCRUT4 (version 597 

HadCRUT.4.6.0.0) and the HadCRUT5 non-infilled data set and HadCRUT5 analysis are shown 598 

in Figure 1. The differences between the non-infilled HadCRUT5 and HadCRUT4 primarily 599 

arise from updates to the SST observational bias assessment in HadSST4. The updated bias 600 

corrections result in slightly cooler anomalies globally and in each hemisphere from the 1880s to 601 

1970s. Anomalies are warmer from the 1980s onwards. 602 

The most obvious difference is the relative warming of HadCRUT5 between around 1970 and 603 

1980. This arises from improved estimates of biases in measurements made in ship engine rooms 604 

at that time. Engine room measurements were biased warm in the 1960s with the warm bias 605 

dropping over time, first between 1970 and 1980 and then again between the early 2000s and 606 

present. There are also changes around the Second World War, where changes to the 607 

assumptions made in HadSST4 about how measurements were taken shifted the mean and 608 

broadened the uncertainty range, reflecting the lack of knowledge of biases during this difficult 609 

period (Kennedy et al., 2019). 610 

Northern hemisphere uncertainty estimates for the non-infilled HadCRUT5 are slightly wider 611 

that those of Morice et al. (2012). This results from a combination of the changes in the SST bias 612 

adjustment model and the adoption of ERA5 as the reference data set for coverage uncertainty 613 

calculations (Section 3.5). This change of reference data set typically gives wider uncertainty 614 

estimates in the northern hemisphere for similar observational coverage. The reverse is true in 615 

the southern hemisphere, with similar or slightly smaller coverage uncertainty estimates for the 616 

non-infilled HadCRUT5. This reflects differences in regional variability in sparsely observed 617 

regions between reanalysis products. 618 

Further differences from HadCRUT4 can be seen in the HadCRUT5 analysis. Temperatures in 619 

the latter decades of the 19
th

 century are on average cooler than in the non-infilled HadCRUT5 620 

data set in the global and northern hemisphere series. Temperatures in the 21
st
 century are on 621 

average warmer than those in the non-infilled HadCRUT5, primarily due to estimation of 622 

additional areas of warm anomalies in high latitude regions in the northern hemisphere, including 623 

use of air temperature anomalies over sea ice inferred from land stations. Rebalancing the 624 

representation of land and marine regions also affects average temperatures throughout the 625 

record. This is consistent with previous studies that adopt local interpolation methods (Cowtan & 626 

Way, 2014; Karl et al., 2015; Lenssen et al., 2019). Together these features result in greater 627 

warming throughout the 20
th

 and 21
st
 centuries in the HadCRUT5 analysis than is indicated by 628 

the non-infilled data set. However, for any given year, the effect of the reconstruction may be to 629 

produce either a warmer or cooler annual average and is dependent on variability in 630 

reconstructed regions that were not well represented in HadCRUT4 (see also Figure 5 (b) and 631 

(d)). Global and northern hemisphere HadCRUT5 analysis series fall outside the upper 95% 632 

uncertainty limit of HadCRUT4 in the 21
st
 century but rarely depart from the uncertainty range 633 

of the HadCRUT5 non-infilled dataset, which includes the updated HadSST4 bias adjustments 634 

and has wider northern hemisphere coverage uncertainty ranges. 635 
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The uncertainty range for the HadCRUT5 analysis is narrower than that for the non-infilled data 636 

set, as the infilling effectively reduces the coverage uncertainty by filling gaps in the data and 637 

accounting for the non-uniform distribution of observations. The effect of this can be clearly 638 

seen in the Southern Hemisphere (Figure 1) where the narrowing of the uncertainty range before 639 

the 1950s is much less than after the 1950s, when routine monitoring on the Antarctic continent 640 

started, and coverage of the HadCRUT5 analysis thereafter approaches 100%. 641 

As discussed in Section 3.1, the error model structure for the non-infilled HadCRUT5 data set is 642 

the same as in Morice et al. (2012), with observational bias adjustment uncertainties encoded 643 

into the ensemble and separate measurement and sampling uncertainty information provided and 644 

propagated into the uncertainty ranges on the hemispheric and global averages shown in Figure 645 

1. The approach adopted for the HadCRUT5 analysis differs in including the effects of 646 

measurement and sampling uncertainties in the ensemble while also sampling from the spatial 647 

analysis uncertainty. Examples of HadCRUT5 analysis ensemble members are shown in Figure 648 

2. 649 

There is little change in the HadCRUT5 analysis ensemble spread for global or hemispheric 650 

averages from the 1970s onwards, reflecting the spread in the underlying SST ensemble and the 651 

relatively stable spatial sampling during this period. The ensemble spread in the global average 652 

in the 1940s is similar to that prior to the 1870s, though in the 1940s, this spread arises 653 

predominantly from uncertainty in the SST biases, whereas prior to the 1870s, the spread is 654 

largely due to uncertainty in the spatial field estimates due to limited observational sampling of 655 

the globe. 656 

There is coherent spatial structure is the deviations of ensemble member fields from the 657 

ensemble mean. This results from uncertainty in the spatial analysis and its estimation from 658 

uncertain observations. Some ensemble members may be cool while others are warm in regions 659 

where uncertainty is high (for example see differences between ensemble members in Antarctica 660 

in Figure 2). The additional coverage uncertainty arising from masked regions is a relatively 661 

smaller component of the total uncertainty as a result of the increased coverage in the 662 

HadCRUT5 analysis fields and the inclusion of reconstruction uncertainty within the ensemble. 663 

On multi-annual timescales, the uncertainty in observational bias adjustments becomes 664 

prominent. This is reflected in persistently warm or cool departures from the ensemble mean in 665 

global and regional diagnostics over many years for individual ensemble members (for example 666 

see ensemble series in Figure 2). 667 

Non-infilled HadCRUT5 ensemble members are shown in Figure 3, matching those shown for 668 

the HadCRUT5 analysis in Figure 2. HadCRUT5 analysis fields have greater spatial extent than 669 

the non-infilled dataset and are also smoother as a result of measurement and sampling 670 

uncertainties being taken into account within the analysis framework. In regions of few, scattered 671 

observations, infilled analysis fields have much greater extent but also show diversity in 672 

reconstructed anomaly patterns, reflecting uncertainty in the reconstruction in these sparsely 673 

observed regions. 674 
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Uncertainty ranges for the global average temperature series in Figure 3 show the ensemble 675 

spread in relation to the full uncertainty range, accounting for all quantified sources of 676 

uncertainty. While the HadCRUT5 analysis and non-infilled data set quantify uncertainty from 677 

the same error sources, the HadCRUT5 analysis encodes a greater portion of the uncertainty into 678 

the ensemble, whereas the non-infilled ensemble only samples uncertainties that are most 679 

important over multi-decadal time scales. The ensemble for the non-infilled HadCRUT5 data set 680 

samples the uncertainty associated with observational bias adjustments, with structure that is 681 

relevant to multi-decadal climate assessments. Unlike the HadCRUT5 analysis, measurement 682 

and sampling uncertainties that are relevant at shorter time scales are not encoded into the 683 

ensemble and are instead provided as auxiliary information. Uncertainty from incomplete global 684 

coverage of the observing network is a greater portion of the total uncertainty for the non-infilled 685 

data set. In contrast, for the HadCRUT5 analysis, the uncertainty from incomplete global 686 

coverage is divided between the analysis ensemble spread in reconstructed regions and a smaller 687 

coverage uncertainty term relating to regions that are masked. 688 
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 689 

Figure 2. HadCRUT5 analysis ensemble members. Upper panel: annual average temperature 690 

anomaly (°C, relative to 1961-90) for 1877, 1942, 1958 and 2016 in four example ensemble 691 

members. Lower panel: ensemble spread in global mean (°C), 1850-2018. The difference 692 

between each ensemble member and the ensemble mean is shown by the grey lines, with the first 693 

four ensemble members (corresponding to the maps above) highlighted in red. Grey shading: 694 

95% confidence interval determined by the ensemble spread. Orange: full uncertainty range 695 

adding the additional coverage uncertainty term. Global means have been calculated by 696 

averaging anomalies for northern and southern hemispheres for each ensemble member. Maps 697 

require six months of data within a year for a grid cell average to be plotted. 698 
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 699 

Figure 3. As Figure 2, but for the HadCRUT5 non-infilled dataset. Upper panel: annual average 700 

temperature anomaly (°C, relative to 1961-90) for 1877, 1942, 1958 and 2016 in four example 701 

ensemble members. Lower panel: ensemble spread in global mean (°C), 1850-2018. The 702 

difference between each ensemble member and the ensemble mean is shown by the grey lines, 703 

with the first four ensemble members (corresponding to the maps above) highlighted in red. Grey 704 

shading: 95% confidence interval determined by the non-infilled ensemble spread. Orange: full 705 

uncertainty range including additional measurement and sampling uncertainty terms, that are not 706 

sampled by the non-infilled ensemble, and the coverage uncertainty term. Global means have 707 

been calculated by averaging anomalies for northern and southern hemispheres for each 708 

ensemble member. Maps require six months of data within a year for a grid cell average to be 709 

plotted. 710 

  711 
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4.2 Global, hemispheric and regional series 712 

Annual global and hemispheric average temperature anomaly series for HadCRUT5 are shown in 713 

Figure 4, along with the fraction of regional data coverage represented in the non-infilled dataset 714 

and the HadCRUT5 analysis.  715 

Areal data coverage in the HadCRUT5 analysis grids first reaches 90% in the 1900s, with two 716 

subsequent drops in coverage in the late 1910s and early 1940s associated with the two world 717 

wars. Northern hemisphere coverage exceeds 99% in the early 1920s and reaches 100% in the 718 

mid-1950s. Uncertainty in southern hemisphere temperatures is greatest in the period prior to the 719 

establishment of a sustained Antarctic monitoring network in the 1950s (see also Figure 5 (a)), 720 

after which global coverage exceeds 97% in the 1960s. The spatial extent of the observing 721 

network in the southern hemisphere is also a prominent contribution to uncertainty in global 722 

average series prior to the 1950s. Global coverage of the analysis fields is typically not complete 723 

even in modern years due to an absence of sustained observation in the southern South Pacific, 724 

and the nearby Southern Ocean and Antarctic. 725 

Southern Hemisphere anomalies are cooler in the HadCRUT5 analysis in the 1990s from around 726 

1992, particularly in 30-60S (Figure 5 (b)). The observing network is less dense in these regions, 727 

with regular shipping covering only the equatorward half of the latitude band, leading to 728 

differences between non-infilled HadCRUT5 and the HadCRUT5 analysis. Variability in the 729 

regional time series (Figure 5) is smaller in the early record in the HadCRUT5 analysis than the 730 

non-infilled dataset, particularly in the high latitude regions as a result of reduced uncertainty 731 

from spatial sampling in the HadCRUT5 analysis. 732 
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 733 

  734 

Figure 4. Comparison between the HadCRUT5 analysis and non-infilled data set. (a) Globe, (b) 735 

Northern Hemisphere and (c) Southern Hemisphere. Upper panel in each pair: annual average 736 

temperature anomaly (°C, relative to 1961-90), 1850-2018. Lower panel in each pair: percentage 737 

of area covered by data in each annual average. Orange: non-infilled HadCRUT5 data set. Blue: 738 

HadCRUT5 analysis. Solid lines: ensemble mean. Orange/blue shading: 95% confidence 739 

interval. Global means have been calculated by averaging anomalies for northern and southern 740 

hemispheres. 741 

 742 
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 743 

 744 

Figure 5. Comparison between the HadCRUT5 analysis and non-infilled data set. (a) 90°S-60°S, 745 

(b) 60°S-30°S, (c) 30°S-0°N, (d) 60°N-90°N, (e) 30°N-60°N and (f) 0°N-30°N. Upper panel in 746 

each pair: annual average temperature anomaly (°C, relative to 1961-90), 1850-2018. Lower 747 

panel in each pair: percentage of area covered by data in each annual average. Orange: non-748 

infilled HadCRUT5 data set. Blue: HadCRUT5 analysis. Solid lines: ensemble mean. 749 

Orange/blue shading: 95% confidence interval. 750 

  751 



Confidential manuscript submitted to Journal of Geophysical Research: Atmospheres 

26 

 

 752 

 753 

 754 

Figure 6. Long-term average temperature anomaly (°C, relative to 1961-90). (a) 1850-1879, (b) 755 

1880-1909, (c) 1910-1939, (d) 1940-1969, (e) 1970-1999 and (f) 2000-2018. Averages require at 756 

least one month per quarter, three quarters per year, and 50% of years per multi-year period. 757 

In regions where data are sparse, and hence uncertainty in surface temperature analyses is 758 

largest, data that might be used to validate the analyses is also highly limited. Here we have used 759 

the ratio of posterior to prior variances to remove regions with weak observational constraint (see 760 

Appendix for details). Despite restricting the reconstruction to regions that are locally 761 

constrained, there is a marked increase in the area of the globe represented by the HadCRUT5 762 

analysis in comparison to the non-infilled data set (see coverage timeseries in Figure 5 and 763 

example monthly fields in Figures S10 to S13 of the Supporting Information). 764 

Figure 6 reveals the patterns of change in successive 30-year periods and the most recent 19 765 

years of the HadCRUT5 analysis. Even in these longer-term averages, there are regions that are 766 

particularly warm or cool relative to the global mean. The final panel for 2000-2018 illustrates 767 

the greater warming at high northern latitudes and over the land compared to the ocean. The 768 

surface waters of the Southern Ocean, in contrast, have warmed more slowly than many other 769 

areas. We also see one area of long-term cooling, to the south of Greenland and Iceland (Parker 770 

et al., 1994). 1880-1909 was a particularly cool period, with centers of low average anomalies in 771 

the South Atlantic, Canada and central Russia. 772 

  773 
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4.3 Comparisons with other analyses 774 

Average temperature changes over the whole period of record in 30° latitude bands for a range of 775 

analyses are shown in Figure 7. These analyses include NOAAGlobalTemp v5 (Huang et al. 776 

2019), NASA GISTEMP v4 (Hansen et al., 2010; Lenssen et al. 2019), the Cowtan & Way 777 

analysis (Cowtan & Way, 2014), and the Berkeley Earth analysis (Rohde & Hausfather, 2020). 778 

The HadCRUT.5.0.0.0 analysis is also shown. 779 

 780 

Figure 7. Comparison between long-term near-surface temperature data sets. Annual average 781 

temperature anomaly (°C, relative to 1961-90), 1850-2018. (a) 90°S-60°S, (b) 60°S-30°S, (c) 782 

30°S-0°N, (d) 60°N-90°N, (e) 30°N-60°N and (f) 0°N-30°N. Black: HadCRUT5 analysis 783 

ensemble mean. Pink: ERA5. Red: GISTEMP. Orange: NOAAGlobalTemp. Green: Berkeley 784 

Earth. Blue: Cowtan & Way. Grey shading: 95% confidence interval on the HadCRUT.5.0.0.0 785 

analysis determined by the ensemble spread and coverage uncertainty. 786 

All of the analyses shown use spatial infilling. Cowtan & Way and Berkeley Earth use 787 

interpolation methods based on a statistical model of local covariance structure (although within 788 

a more complex statistical model of global temperature variation in the Berkeley Earth analysis). 789 

NOAAGlobalTemp uses a model of spatially-varying local patterns of temperature variability. 790 
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GISTEMP employs a distance-weighted interpolation for land based meteorological station data 791 

and uses the same large-scale analysis of sea-surface temperatures used in NOAAGlobalTemp.  792 

GISTEMP, Cowtan & Way and Berkeley are each close to globally complete since the 1950s 793 

while the NOAAGlobalTemp data set does not extend into data-sparse polar regions. 794 

The analyses are most similar in regions with the densest observational coverage, such as in the 795 

northern mid-latitudes (Figure 7 (e)). Where observational coverage is lowest, the analyses 796 

become sensitive to assumptions underpinning reconstruction methods. For example, 797 

NOAAGlobalTemp reconstructs fields through low-frequency smoothing and a model of 798 

dominant spatial patterns of variability, while methods based on local covariance structure may 799 

tend toward a field mean in the case of Cowtan & Way, Berkeley, or the HadCRUT5 analysis 800 

ensemble mean, or towards the anomalies observed at nearby locations for the GISTEMP land 801 

analysis method. The analyses also differ in how regions that are distant from observed locations 802 

are included or are masked. 803 

The HadCRUT5 analysis method is closely related to the method used in Cowtan & Way but 804 

differs in three key aspects. First, it accounts for the spatial variation in data uncertainty as well 805 

as the estimated measurement and sampling error covariances. This is particularly important for 806 

the oceans, where less-reliable ship data are combined with more accurate data from drifting and 807 

moored buoys. Second, the spatial analysis method is used to make improved temperature 808 

estimates at all locations, not just grid cells without data. Third, by using a full covariance model 809 

for both the temperature field and the observational uncertainty within a Bayesian analysis 810 

framework, it is possible to sample from the posterior of the distribution to generate a consistent 811 

ensemble data set that combines all known sources of uncertainty whilst respecting the estimated 812 

covariance structure of the temperature anomaly field. 813 

The differences between the HadCRUT5 analysis ensemble mean and Cowtan & Way in the post 814 

1950 period, are largely due to changes in the estimated SST biases. As Berkeley Earth shows 815 

similar differences and uses the same SST data set as Cowtan & Way, we can infer that changes 816 

in the estimated SST biases are the key difference here as well. The changes in SST bias 817 

estimates are larger in the more sparsely observed regions – the tropics and southern hemisphere 818 

– where there are fewer ships, so changes in assumptions about observing practice of a few 819 

countries can have a proportionately larger effect. 820 

Differences between HadCRUT5 and the ERSST-based data sets, GISTEMP and 821 

NOAAGlobalTemp are also largely due to differences in estimated SST biases. In particular, 822 

ERSST tends to be cooler than HadSST4 from the early 20
th

 century to the start of the Second 823 

World War and from the end of the war to around 1955; this difference is associated with 824 

uncertainty in the estimated biases associated with bucket measurements, particularly in the 825 

Southern Hemisphere and the tropics. From the 1960s, agreement between HadSST4 and ERSST 826 

is better, though there is a notable cooling of ERSST relative to HadSST4 in the early 1990s 827 

associated with a relative cooling of marine air temperature compared to SST (see Kennedy et al. 828 

2019). From the late 1990s onwards, both ERSSTv5 and HadSST4 show good relative stability 829 

compared to instrumentally homogeneous data sets (Hausfather et al., 2017; Kennedy et al., 830 

2019). Notable structural uncertainty remains in early SST records. 831 
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Differences can be seen in the first half of the 20
th

 century between 832 

GISTEMP/NOAAGlobalTemp and Cowtan & Way/HadCRUT5 over the latitude band 0°N-30°S 833 

with GISTEMP/NOAAGlobalTemp cooler (Figure 7 (c)). Regional differences over land partly 834 

result from differences in homogenization and the underlying station data sets. HadCRUT5 uses 835 

homogenized station data (from CRUTEM5), as provided by national meteorological services or 836 

research projects. Other datasets include automated homogenization algorithms (Huang et al., 837 

2019; Menne et al., 2018; Rohde et al., 2013b). This may result in regional differences between 838 

data sets, particularly where the measurement network is less dense and, as a consequence, there 839 

is greater uncertainty in homogenization. 840 

 841 

 842 

Figure 8. Comparison of annual global average temperature anomaly series (⁰C) relative to two 843 

baselines: (a) 1961-1990 and (b) 1850-1900, taken as representative of pre-industrial conditions. 844 

Black: HadCRUT5 analysis ensemble mean. Pink: ERA5. Red: GISTEMP. Orange: 845 

NOAAGlobalTemp. Green: Berkeley Earth. Blue: Cowtan and Way. Grey shading: 95% 846 

confidence interval on the HadCRUT5 analysis determined by the ensemble spread only. Global 847 

means have been calculated for each data set by averaging anomalies for northern and southern 848 

hemispheres. For all datasets except for ERA5, anomaly series are computed by adjusting 849 

monthly time series to the appropriate baseline using data available in the anomaly reference 850 

period before averaging to annual series. ERA5 timeseries are shifted to match the 1981-2010 851 

average for the HadCRUT5 analysis series, due to insufficient data in the climatology periods to 852 



Confidential manuscript submitted to Journal of Geophysical Research: Atmospheres 

30 

 

compute anomalies. Anomaly series and uncertainties provided by the dataset producers using 853 

each dataset’s native methods are shown in Supporting Information Figure S9. 854 

Temperature changes relative to the average over the late 19th century are shown in Figure 8.  855 

The 51-year period 1850-1900 is often considered for practical purposes to be representative of 856 

pre-industrial conditions. This approximation of pre-industrial temperatures is consistent with 857 

that adopted in IPCC AR5 (Hartmann et al., 2013) and IPCC SR1.5 (Allen et al., 2018), noting 858 

that any choice of period is a compromise, with natural variability and forcing playing a role 859 

(Hawkins et al., 2017). For analyses that do not extend back to 1850 (NOAAGlobalTemp and 860 

GISTEMP), 1880 to 1900 is used as the reference period here. By referencing the time series to 861 

this early period, the spread of temperature anomalies later in the series is increased. This 862 

increased spread reflects uncertainty in temperatures in the early reference period and not 863 

uncertainty in recent temperature changes. On the global mean, the analyses are remarkably 864 

consistent with one another despite the differences in their construction.  865 

5 Conclusions 866 

An updated data set of global near-surface temperature change, HadCRUT5, is presented. 867 

Updates in the CRUTEM5 dataset have expanded the underlying land station series and provided 868 

additional data quality checks. Updates in HadSST4 have brought improved understanding of the 869 

evolution of the marine observing network, contributing improved bias adjustments and 870 

uncertainty estimates. These are combined both in a non-infilled data set and in a new ensemble 871 

statistical analysis that provides a more spatially complete assessment of global and regional 872 

changes and uncertainty therein. 873 

The new HadCRUT5 analysis ensemble samples a greater range of the quantified uncertainties 874 

than our previous assessment (Morice et al., 2012). Uncertainties arising from systematic errors 875 

associated with observational methods, measurement and sampling errors and spatial analysis 876 

uncertainty are all encoded into the expanded 200-member ensemble, communicating the major 877 

known sources of uncertainty in an easily accessible way. 878 

Time series of globally averaged temperature anomalies show greater 21
st
 century warming for 879 

the HadCRUT5 analysis than for the HadCRUT5 non-infilled data set. The increased warming is 880 

predominantly associated with improved representation of the rapidly warming but sparsely 881 

observed high latitudes of the northern hemisphere. This finding is consistent with other 882 

independently-produced statistical analyses of global temperature changes and is also consistent 883 

with temperature changes observed in reanalysis data sets that assimilate observational data into 884 

a numerical weather prediction model (Kobayashi et al., 2015; Gelaro et al., 2017; Blunden & 885 

Arndt, 2019; Hersbach et al., 2020). 886 

The HadCRUT5 analysis indicates that globally averaged temperatures in the second half of the 887 

19th century were on average cooler than estimates based on non-infilled HadCRUT5. This is 888 

also consistent with assessments based on other independently produced statistically infilled 889 

analyses. Combined with the evidence of increased warming in recent years, the infilled analyses 890 

indicate that warming since the 19th century is likely greater than is indicated by HadCRUT4 as 891 

a result both of observational sampling in the non-infilled data set and of updates to our 892 



Confidential manuscript submitted to Journal of Geophysical Research: Atmospheres 

31 

 

understanding of biases in sea-surface temperature measurements resulting from changes in the 893 

make-up of the marine observing network. 894 

There is, however, uncertainty in our understanding of 19th century temperatures resulting from 895 

limitations in observational sampling, particularly in the southern hemisphere, and uncertainty 896 

associated with residual observational biases. Uncertainty remains in the early instrumental 897 

record in locations for which observational data are not available to inform the analysis. This is 898 

most evident in the Antarctic, the Arctic and regions of the southern hemisphere land, prior to the 899 

establishment of permanent observing sites. 900 

Methodological choices in representation of data sparse regions in different data sets lead to 901 

differences between global and regional average temperature time series. The impacts of these 902 

choices are most evident in regions and at times in which the observational data required to 903 

constrain the analysis is limited or unavailable, particularly in regions of the southern hemisphere 904 

in the early record. The spread of 19th century temperature analyses produced by different 905 

monitoring centers in part reflects the sensitivity to differences in methods used. These methods 906 

assume different statistical models for the data; therefore, the differences between analyses are 907 

not necessarily captured by the uncertainty estimates of any single method. 908 

The updated analysis methods assist in mitigation of the impacts of low availability of 909 

observational data in data sparse regions. We anticipate that an extension, in potential future 910 

work, of the analysis covariance model to describe regional variation in variability would further 911 

improve the analysis temperature fields and uncertainty estimates. However, digitization of as 912 

yet unavailable observations and submission of these to open archives continues to be invaluable 913 

to improve regional data coverage and reduce uncertainty further. 914 

The use of marine air temperature observations has recently been proposed to reconcile 915 

differences between datasets produced as a blend of SST and air temperature observations and 916 

model-based studies using near-surface air temperatures over ocean (Cowtan et al., 2015; 917 

Richardson et al., 2016). However, uncertainties in observed long-term changes in marine air 918 

temperature and their differences from observed SSTs are important to understand (Kennedy et 919 

al. 2019, Chan and Huybers 2019, Chan et al. 2019), and the marine air temperature observing 920 

network is less robust than that for SST and is in long-term decline (Berry & Kent, 2017). 921 

Challenges also remain in monitoring near-surface temperature changes in the cryosphere, given 922 

sparse observational coverage and changes in sea-ice extent, with impacts on downstream 923 

assessments (Richardson et al., 2018). 924 

Relative biases in sea-surface temperature measurements arise from differences in measurement 925 

methods and instrumentation. Such biases change regionally and over time with gradual as well 926 

as abrupt changes in the composition of the observing network or underlying databases. The 927 

characteristics of different bias adjustment schemes can be seen in the differences between 928 

analyses, broadly grouping data sets into those (GISTEMP, Lenssen et al. (2019) and 929 

NOAAGlobalTemp, Huang et al. (2019)) that adopt the ERSST v5 dataset (Huang et al., 2017), 930 

those (Cowtan & Way (2014) and Berkeley Earth (Rohde & Hausfather, 2020)) that adopt 931 

HadSST3 (Kennedy et al., 2011a and b), and that which uses the improved HadSST4 data set 932 

(Kennedy et al., 2019), as is documented here. Differences between bias adjustments applied in 933 

each data set are smaller than the assessed adjustments themselves, which result in a net 934 
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reduction in observed warming compared to unadjusted measurements (Kennedy et al., 2019). 935 

Nevertheless, differences in SST bias assessments feature prominently as a source of difference 936 

between studies and remain a key uncertainty in assessing long-term change (Kent et al., 2017). 937 

Despite methodological differences, temperature series derived from different analyses are in 938 

good agreement, generally lying within the assessed uncertainty range of the HadCRUT5 939 

analysis. Updates in HadCRUT5 bring our estimates of global and hemispheric series closer to 940 

those of other recent studies. Remaining differences between estimates are understood to 941 

predominantly arise from differences in spatial analysis methods applied and differences in how 942 

each analysis accounts for changes in marine observing methods. 943 
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 950 

Data access 951 

 952 

The gridded temperature anomalies, the global and hemispheric timeseries and their uncertainty 953 

intervals will be available from the Met Office website (https://www.metoffice.gov.uk/hadobs).  954 

HadCRUT5 data will be archived for long term preservation and reuse as part of the HadCRUT 955 

catalogue at CEDA https://catalogue.ceda.ac.uk/uuid/f7189fabb084452c9818ba41e59ccabd. The 956 

CEDA archive of the HadCRUT.5.0.0.0 data can be accessed from 957 

https://catalogue.ceda.ac.uk/uuid/b9698c5ecf754b1d981728c37d3a9f02. 958 

 959 

ERA5 was obtained from the Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth 960 

generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate 961 

Change Service Climate Data Store (CDS), date of access: 28/11/2019, 962 

https://cds.climate.copernicus.eu.  963 

 964 

HadISST.2.2.0.0 was accessed on 11/12/2019 from 965 

https://www.metoffice.gov.uk/hadobs/hadisst2/. 966 

 967 

The HadSST.4.0.0.0 ensemble is available from https://www.metoffice.gov.uk/hadobs/hadsst4/.  968 

 969 

CRUTEM5 data will be available from https://www.metoffice.gov.uk/hadobs and the CRUTEM 970 

collection at CEDA https://catalogue.ceda.ac.uk/uuid/eeabb5e1ff2140f48e76ea1ffda6bb48. The 971 

CEDA archive of the CRUTEM.5.0.0.0 data can be accessed from 972 

https://catalogue.ceda.ac.uk/uuid/901f576dacae4e049630ab879d6fb476. 973 

 974 

HadCRUT.4.6.0.0 is available from https://www.metoffice.gov.uk/hadobs/hadcrut4/. 975 

 976 

GISTEMP version 4 was accessed on 17/11/2019 at 15:45 GMT from 977 

https://data.giss.nasa.gov/gistemp/. 978 

https://www.metoffice.gov.uk/hadobs
https://catalogue.ceda.ac.uk/uuid/f7189fabb084452c9818ba41e59ccabd
https://catalogue.ceda.ac.uk/uuid/b9698c5ecf754b1d981728c37d3a9f02
https://cds.climate.copernicus.eu/
https://www.metoffice.gov.uk/hadobs/hadisst2/
https://www.metoffice.gov.uk/hadobs/hadsst4/
https://www.metoffice.gov.uk/hadobs
https://catalogue.ceda.ac.uk/uuid/eeabb5e1ff2140f48e76ea1ffda6bb48
https://catalogue.ceda.ac.uk/uuid/901f576dacae4e049630ab879d6fb476
https://www.metoffice.gov.uk/hadobs/hadcrut4/
https://data.giss.nasa.gov/gistemp/
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 979 

NOAAGlobalTemp version 5 was accessed on 15/10/2019 at 07:07 GMT from 980 

https://www.ncdc.noaa.gov/noaa-merged-land-ocean-global-surface-temperature-analysis-981 

noaaglobaltemp-v5. 982 

 983 

Berkeley Earth was accessed on 17/11/2019 at 16:25 GMT from https://berkeleyearth.org/data-984 

new/. 985 

 986 

Cowtan and Way was accessed on 14/10/2019 at 10:40 GMT from https://www-987 

users.york.ac.uk/~kdc3/papers/coverage2013/series.html. 988 

 989 

Appendix A: Details of spatial analysis methods 990 

A.1 Modelling the temperature anomaly field as a Gaussian process 991 

Here we describe the methods used to construct the HadCRUT5 analysis. The method described 992 

in this section follows the Gaussian process method with explicit basis functions, described in 993 

Rasmussen & Williams (2006). The methods for analysis hyperparameter estimation are 994 

described in Appendix A.2. Appendix A.3 describes application to the non-infilled land air 995 

temperature and sea surface temperature ensemble grids, including methods for sampling 996 

analysis uncertainties. Regional masking of the analyses is described in Appendix A.4. 997 

For a monthly temperature anomaly field 𝒈, we model a vector of gridded temperature anomaly 998 

observations 𝒚 as an additive combination of the true grid cell temperature anomaly values at the 999 

observed grid cells, denoted 𝒈𝑜𝑏𝑠, and an observational error term 𝜺 : 1000 

 1001 

𝒚 = 𝒈𝑜𝑏𝑠 + 𝜺 
(

A1) 

 1002 

The temperature anomaly field is decomposed into a regression model for the field mean, 1003 

described in terms of a matrix of basis functions 𝑯 with coefficients 𝜷, and a spatially correlated 1004 

field 𝒇. The observations are then modelled by this decomposition, notating the basis function 1005 

and the spatial field values at the observed grid cells as 𝑯𝑜𝑏𝑠 and 𝒇𝑜𝑏𝑠: 1006 

 1007 

𝒚 = 𝒇𝑜𝑏𝑠 + 𝑯𝑜𝑏𝑠
𝑇 𝜷 + 𝜺 (A

2) 

 1008 

Similarly, we define 𝒈∗ as the values true temperature anomaly values at a set of prediction grid 1009 

cells, notating basis functions and the spatial random field values at the prediction grid cells as  1010 

𝑯∗ and 𝒇∗, so that 𝒈∗ = 𝒇∗ + 𝑯∗
𝑇𝜷. In this analysis, 𝑯 is set as a vector of ones so that the 1011 

regression model acts as an estimate of a constant field mean for the analyzed month. 1012 

https://www.ncdc.noaa.gov/noaa-merged-land-ocean-global-surface-temperature-analysis-noaaglobaltemp-v5
https://www.ncdc.noaa.gov/noaa-merged-land-ocean-global-surface-temperature-analysis-noaaglobaltemp-v5
https://berkeleyearth.org/data-new/
https://berkeleyearth.org/data-new/
https://www-users.york.ac.uk/~kdc3/papers/coverage2013/series.html
https://www-users.york.ac.uk/~kdc3/papers/coverage2013/series.html
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The spatial field 𝒇 is defined in terms of its covariance structure. This covariance structure is 1013 

parameterized as a function of distance between locations, as is common in Gaussian process or 1014 

kriging analyses. The covariance 𝑘(𝑠𝑚, 𝑠𝑛) in spatial field values between locations 𝑠𝑚 and 𝑠𝑛 is 1015 

defined as:  1016 

 1017 

𝑘(𝑠𝑚, 𝑠𝑛) = cov(𝑓(𝑠𝑚), 𝑓(𝑠𝑛)) 
(

A3) 

 1018 

which defines the elements of a covariance matrix 𝑲, with elements [𝑲]𝑚𝑛 = 𝑘(𝑠𝑚, 𝑠𝑛). In this 1019 

analysis, a Matérn covariance function is used to model the covariances 𝑘(𝑠𝑚, 𝑠𝑛). This 1020 

covariance function is parameterized by a smoothing hyperparameter 𝜈, a range hyperparameter 1021 

𝑟 that controls the rate at which covariance decays with distance between locations, and an 1022 

amplitude hyperparameter 𝜎. We use a stationary covariance function, with fixed values of the 1023 

model hyperparameters fitted independently for the land air temperature and sea-surface 1024 

temperature analyses. Covariances are evaluated as a function of Euclidian distance, rather than 1025 

great circle distance, to retain the flexibility of Matérn covariance functions for data on the 1026 

surface of a spherical Earth, avoiding restrictions to the range of smoothing hyperparameter 1027 

values 𝜈 for which Matérn covariances are valid (i.e. to produce positive-definite covariance 1028 

matrices) when using great circle distances (Gneiting, 2013). For separation distances with 1029 

sufficiently strong covariance to be physically important, the Euclidian distance is close to the 1030 

great circle distance. 1031 

Values of the field at observed grid cells, 𝒇𝑜𝑏𝑠, are modelled as realizations from 1032 

𝒇𝑜𝑏𝑠~𝑁(𝟎, 𝑲𝑜𝑏𝑠) while those at predictions locations, 𝒇∗, are modelled as 𝒇∗~𝑁(𝟎, 𝑲∗). Cross 1033 

covariances between observed grid cells and prediction grid cells (i.e. the full output grid) are 1034 

defined as 𝑲𝑐𝑟𝑜𝑠𝑠. We define 𝑲𝒚 as the sum of the covariance 𝑲𝑜𝑏𝑠 and the observational error 1035 

covariance 𝑹: 1036 

 1037 

𝑲𝒚 = 𝑲𝑜𝑏𝑠 + 𝑹 (

A4) 

 1038 

The observational error covariance matrices are constructed from the error model terms of the 1039 

non-infilled datasets. When the analysis method is applied to an ensemble member of the land air 1040 

temperature ensemble (i.e. the observation vector 𝒚 contains the grid cell values for an individual 1041 

land ensemble member for one month), the observational error covariance 𝑹 contains the 1042 

additional uncorrelated within-grid-cell measurement and sampling error variances on the 1043 

leading diagonal with zeros elsewhere. When applied to a sea-surface temperature ensemble 1044 

member (i.e. 𝒚 contains the grid cell values for an individual HadSST4 ensemble member), 𝑹 is 1045 

constructed from the HadSST4 per-platform uncertainties for the partially correlated error 1046 

component, provided as full error covariances in HadSST4, with additional uncertainty from 1047 

uncorrelated measurement and sampling error variances added onto the leading diagonal. 1048 
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Estimation proceeds following Rasmussen & Williams (2006). The expected value of the 1049 

anomaly field 𝒈∗ given the observations 𝒚 is defined as 𝝁𝒈∗|𝒚 where: 1050 

 1051 

𝝁𝒈∗|𝒚 = 𝑲𝑐𝑟𝑜𝑠𝑠
𝑇 𝑲𝒚

−1𝒚 + 𝑭𝑇𝝁𝜷|𝒚 
(

A5) 

 1052 

 1053 

and: 1054 

 1055 

𝑭∗ = 𝑯∗ − 𝑯𝑜𝑏𝑠𝑲𝒚
−1𝑲𝑐𝑟𝑜𝑠𝑠 

(

A6) 

 1056 

Here the terms involving the estimation of regression coefficients 𝜷 (of which we need no prior 1057 

knowledge) are: 1058 

 1059 

𝝁𝜷|𝒚 = 𝚺𝜷|𝒚𝑯𝑜𝑏𝑠𝑲𝒚
−1𝒚 

(

A7) 

 1060 

𝚺𝜷|𝒚 = (𝑯𝑜𝑏𝑠𝑲𝒚
−1𝑯𝑜𝑏𝑠

𝑇 )
−1

 
(

A8) 

 1061 

The posterior covariance 𝚺𝒈∗|𝒚 for the Gaussian process prediction is given by: 1062 

 1063 

𝚺𝒈∗|𝒚 = 𝑲∗ − 𝑲𝑐𝑟𝑜𝑠𝑠
𝑇 𝑲𝒚𝑲𝑐𝑟𝑜𝑠𝑠 + 𝑭𝑇𝚺𝜷|𝒚𝑭 

(

A9) 

 1064 

Together, 𝝁𝒈∗|𝒚 and 𝜮𝒈∗|𝒚 define the full posterior distribution of the Gaussian process estimate 1065 

of the gridded temperature anomaly field 𝒈∗ for all output grid cells, given observations 𝒚. 1066 

A.2 Kernel hyperparameter estimation 1067 

The estimation of the amplitude (𝜎) and decorrelation range (𝑟) parameters of our spatial model 1068 

is based on application of the maximum marginal likelihood method that is described in 1069 

Rasmussen & Williams (2006). Here, the kernel hyperparameters 𝜽 = (𝜎, 𝑟) are fit through 1070 
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numerical optimization to find the parameters that maximize the marginal log likelihood 1071 

function, rearranged here as: 1072 

 1073 

log 𝑝(𝒚|𝜽) = −
1

2
𝒚𝑻𝑲𝒚

−𝟏𝒚 +
1

2
𝝁𝜷|𝒚

𝑻 𝚺𝜷|𝒚
−𝟏 𝝁𝜷|𝒚 −

1

2
log|𝑲𝑦| +

1

2
log|𝚺𝜷|𝒚|

−
𝑁 − 𝐽

2
log (2π) 

(A1

0) 

 1074 

Here, 𝑁 is the number of observed grid cells in 𝒚 and 𝐽 is the number of covariates included in 1075 

the regression portion of the analysis model. We include a single covariate for the analysis field 1076 

mean, hence 𝐽 = 1 in our application. 1077 

The hyperparameters are fit to monthly ‘best estimate’ gridded temperature anomaly fields 1078 

separately for land air temperatures and sea-surface temperatures. Observational uncertainties are 1079 

derived from the HadCRUT5 land ensemble uncertainty model (described in Morice et al., 2012) 1080 

and HadSST4 uncertainty model (Kennedy et al., 2019), as described below. 1081 

As we fit hyperparameters to best estimates of the non-filled grids, we include an additional 1082 

uncertainty component in the observational error covariance to represent the observational bias 1083 

uncertainty that is encoded into the land ensemble and the HadSST4 ensemble. Hence, when 1084 

fitting hyperparameters, an extended observational error covariance 𝑹′ is substituted for 𝑹 where 1085 

𝑹′ =  𝑹 + 𝚺𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 and 𝚺𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 is an error covariance matrix that is empirically derived from 1086 

the ensemble. The ensemble-derived error covariance matrices are only used when fitting 1087 

hyperparameters for the best estimate fields. They are not included in the observational error 1088 

covariance term when fitting the analysis fields for individual ensemble members in Appendix 1089 

A.3.  1090 

For land hyperparameter estimation, the monthly observation vector 𝒚 is constructed from a 1091 

CRUTEM5 best estimate field. The observational error covariance 𝑹 is constructed from the 1092 

uncorrelated measurement and sampling uncertainty grids, from the Brohan et al. (2006) error 1093 

model, while 𝚺𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 is computed from the HadCRUT5 land ensemble. For marine 1094 

hyperparameter estimation, the observation vector 𝒚 is constructed from a HadSST4 ensemble 1095 

median field. The observational error covariance matrices 𝑹 are constructed by combining 1096 

HadSST4 uncorrelated measurement and sampling uncertainties with the HadSST4 ‘micro bias’ 1097 

error covariance matrices and 𝚺𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 is computed from the HadSST4 ensemble. 1098 

Hyperparameter estimates are computed for each of the 360 monthly fields in the 1961 to 1990 1099 

climatology period, during which the observational sampling is near global in extent. The 1100 

hyperparameters used in the analysis are taken as the average of the hyperparameters fitted in the 1101 

360 monthly optimizations, with scale parameters rounded to the nearest 0.05 ˚C and range 1102 

parameters rounded to the nearest 50 km. The resulting amplitude parameter 𝜎 and range 1103 

parameter 𝑟 for the land air temperature analysis are 𝜎 = 1.2˚C and 𝑟 = 1300 km. For the sea 1104 

surface temperature analysis, the fitted parameters are 𝜎 = 0.6˚C and 𝑟 = 1300 km. The 1105 

smoothing parameter was fixed at 𝜈 = 1.5. This model represents typical land and marine 1106 



Confidential manuscript submitted to Journal of Geophysical Research: Atmospheres 

37 

 

temperature anomaly variability. The model does not include regional and seasonal variations in 1107 

these parameters, nonetheless where there is a sufficient observational constraint the method can 1108 

reproduce appropriate regional and seasonal variability in the analysis anomaly fields. Additional 1109 

information on the monthly hyperparameter fits can be found in the Supporting Information. 1110 

A.3 Ensemble analysis 1111 

The HadCRUT5 ensemble land and marine analyses are constructed by applying Gaussian 1112 

process regression to each ensemble member of the non-infilled land and marine data sets. 1113 

Uncertainty is further explored by encoding analysis uncertainty into the ensemble, sampling 1114 

from the Gaussian process posterior distribution through a process called conditional simulation 1115 

(Chilès & Delfiner, 2012).  1116 

We denote a vector of observed grid cell temperature anomalies for a non-infilled ensemble 1117 

member as 𝒚𝑑, with the subscript 𝑑 indexing the ensemble member. We then apply the Gaussian 1118 

process analysis method to compute the expected value of the temperature anomaly field 𝝁𝒈∗𝑑|𝒚𝑑
 1119 

for the ensemble member, substituting 𝒚𝑑 and 𝝁𝒈∗𝑑|𝒚𝑑
 into Equation A5. We then proceed to 1120 

sample the analysis uncertainty through conditional simulation, as described below. 1121 

For each ensemble member, we draw a random sample from the joint prior distribution of the 1122 

anomaly field at observed and prediction locations, setting the regression coefficient for each 1123 

sample to an arbitrary value of 𝜷′ = 𝟎. This sampling distribution is defined as: 1124 

 1125 

[
𝒈𝑜𝑏𝑠

′

𝒈∗
′ ] ~𝑁 ([

𝑯𝑜𝑏𝑠
𝑇 𝟎

𝑯∗
𝑇𝟎

] , [
𝑲𝑜𝑏𝑠 𝑲𝑐𝑟𝑜𝑠𝑠

𝑇

𝑲𝑐𝑟𝑜𝑠𝑠 𝑲∗
]) 

(

A11) 

 1126 

This provides samples of the anomaly field, according to the Gaussian process model on the full 1127 

output grid, drawn as 𝒈∗
′ = 𝒇∗

′ + 𝑯∗
𝑇𝟎, and at the observed locations 𝒈𝑜𝑏𝑠

′ = 𝒇𝑜𝑏𝑠
′ + 𝑯𝑜𝑏𝑠

𝑇 𝟎, with 1128 

the correct covariance structure between observed and output grid locations. 1129 

We then generate pseudo-observations 𝒚′ of the simulated temperature field by sampling from 1130 

the observational error model 𝜺′~𝑁(𝟎, 𝑹). The simulated observation is then defined as: 1131 

 1132 

𝒚′ = 𝒇𝑜𝑏𝑠
′ + 𝑯𝑜𝑏𝑠

𝑇 𝟎 + 𝜺′ 
(

A12) 

1133 

Simulations of reconstruction error are based on application of the Gaussian process estimation 1134 

to the simulated anomaly fields and simulated (pseudo) observations. The difference between the 1135 

simulated field sample 𝒈∗
′  and the estimate based on the simulated pseudo observations 𝝁𝒈∗

′|𝒚′ is 1136 

a sample of the reconstruction error according to the Gaussian process model. This difference, 1137 
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𝒆′ = 𝝁𝒈∗
′|𝒚′ − 𝒈∗

′ , is a sample from the posterior distribution of the Gaussian process regression, 1138 

i.e. 𝒆′~𝑁(𝝁𝒈∗
′|𝒚′ , 𝚺𝒈∗

′|𝒚′). 1139 

For an ensemble member indexed by 𝑑 with observation vector 𝒚𝑑, the analysis values 𝒈∗𝑑
 are 1140 

computed as the sum of the Gaussian process estimate 𝝁𝒈∗𝑑|𝒚𝑑
, based on the real observations 1141 

𝒚𝑑, and a simulated reconstruction error sample 𝒆𝑑
′ : 1142 

 1143 

𝒈∗𝑑
= 𝝁𝒈∗𝑑|𝒚𝑑

+ 𝒆𝑑
′  

(

A13) 

 1144 

The resulting ensemble encodes both the bias terms in the underlying observational ensemble 1145 

and the reconstruction error for the Gaussian process. 1146 

The applied Gaussian process estimation is purely spatial and so does not provide information on 1147 

temporally-correlated reconstruction error. To mitigate this, we modify the above sampling 1148 

method to encode temporal correlation into the conditional simulation process. The simulated 1149 

spatial fields 𝒈∗
′  and 𝒈𝑜𝑏𝑠

′  are sampled such that they are fully correlated throughout a year, i.e. 1150 

the same spatial field is used for each sample within a year. This provides a conservative upper 1151 

bound on uncertainty in annual averages derived from the ensemble. 1152 

Known temporal correlations in observational measurement and sampling errors, which are not 1153 

represented in the non-infilled land and marine ensembles, are similarly encoded into the 1154 

observational error samples 𝜺𝑑
′  when generating pseudo-observations. This strategy is applied for 1155 

the residual SST micro biases that are represented in the HadSST4 observational error 1156 

covariance matrices. These are encoded using the same random draw for all months in a year 1157 

when sampling. This allows uncertainty in annual averages to be computed under a conservative 1158 

assumption of full temporal correlation of SST micro biases within a year, as defined by the 1159 

HadSST4 uncertainty model (Kennedy et al., 2019). Other measurement and sampling 1160 

uncertainties, associated with temporally uncorrelated errors, are sampled independently for each 1161 

month. No additional temporal correlation is encoded into the ensemble for land air temperatures 1162 

as there is no temporal correlation in the measurement and sampling error terms for CRUTEM5 1163 

(although the analyzed land ensemble does already sample time correlated observational errors 1164 

from residual station biases, which are distinct from the measurement and sampling uncertainty 1165 

terms discussed here). 1166 

Although knowledge of temporal correlation in errors is not used to improve the estimated 1167 

anomaly fields, the result of the sampling process is to enable an upper bound on uncertainty in 1168 

annual averages to be obtained directly from the ensemble. 1169 

A.4 Observational constraint mask 1170 

Despite the application of spatial reconstruction, there are regions of the world in which the 1171 

available observational coverage, particularly in the early part of the record, is such that a 1172 

reliable reconstruction is not possible. In regions where local observations are not available, the 1173 
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analysis ensemble mean reverts towards the regression model estimate of the mean temperature 1174 

anomaly, inferred from observed regions, while the ensemble spread tends towards that 1175 

described by the Gaussian process prior distribution.   1176 

Consequently, regions where the constraint from local observations is poor are removed from the 1177 

analysis. The reconstruction in these regions is highly sensitive to the prior covariance model and 1178 

the estimated regression term 𝑯∗
𝑇𝝁𝜷|𝒚, for which the coefficient estimate may be biased towards 1179 

observed regions. This has been found to be the case in test analyses of climate model 1180 

simulations in which global average temperature estimates have been found to be biased towards 1181 

northern hemisphere temperatures during periods with sparse southern hemisphere coverage.   1182 

The criteria used to mask regions, defined in terms of a threshold 𝛼, is based on the ratio of 1183 

posterior and prior variance of the local Gaussian process estimate, omitting the global 1184 

regression term which has an improper prior, with regions of the analysis masked where the 1185 

following inequality is satisfied:  1186 

 1187 

𝟏 −
𝑑𝑖𝑎𝑔(𝑲∗ − 𝑲𝑐𝑟𝑜𝑠𝑠

𝑇 𝑲𝒚𝑲𝑐𝑟𝑜𝑠𝑠)

𝑑𝑖𝑎𝑔(𝑲∗)
< 𝛼 (

A14) 

 1188 

The left-hand side of Equation A14 is bounded between zero and one and we use a threshold of 1189 

𝛼 = 0.25 to provide a balance between retaining regions with useful information content and 1190 

masking those regions that have a weak observational constraint. Global and hemispheric 1191 

average temperature series for varying 𝛼 are provided in the Supporting Information and indicate 1192 

that these diagnostics are insensitive to the choice of 𝛼 values in the range 0.1 to 0.5. 1193 

 1194 
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